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Collider (LHC) sparticle production cross sections. The change in priors has a significant

effect, strongly suppressing the pseudoscalar Higgs boson dark matter annihilation region,

and diminishing the probable values of sparticle masses. We also show how to interpret

fit information from a Markov Chain Monte Carlo in a frequentist fashion; namely by

using the profile likelihood. Bayesian and frequentist interpretations of CMSSM fits are

compared and contrasted.
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1. Introduction

The impending start-up of the LHC makes this a potentially exciting time for supersym-

metric (SUSY) phenomenology. Anticipating the arrival of LHC data, a small industry

has grown up aiming to forecast the LHC’s likely discoveries. There are big differences

between nature of the questions answered by a forecast, and the questions that will be

answered by the experiments themselves when they have acquired compelling data. A

weather forecast predicting “severe rain in Cambridgeshire at the end of the week” should

not be confused with a discovery of water. However, the forecast is something which influ-

ences short-term flood plans and will set priorities within the list of “urgent repairs needed

by flood defences”.

LHC weather forecasts for sparticle masses or cross sections set priorities among signals

needing to be investigated, or among expensive Monte Carlo background samples compet-

ing to be generated. Forecasts can influence the design parameters of future experiments

and colliders. In advance of LHC we would like to have some sort of idea of what luminos-

ity will be required in order to detect and/or measure supersymmetry. There is also the

question of which signatures are likely to be present.

In order to answer questions such as these, a programme of fits to simple SUSY models

has proceeded in the literature [4 – 8]. The fits that we are interested in have made the

universality assumption on soft SUSY breaking parameters: the scalar masses are set to be

equal to m0, the trilinear scalar couplings are set to be A0 multiplied by the corresponding

Yukawa couplings and all gaugino masses are set to be equal to M1/2. Such assumptions,
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when applied to the MSSM, are typically called mSUGRA or the constrained minimal

supersymmetric standard model. The universality conditions are typically imposed at a

gauge unification scale MGUT ∼ 2×1016 GeV. The universality conditions are quite strong,

but allow phenomenological analysis of a varied subset of MSSM models. The universality

assumption is not unmotivated since, for example, several string models [9] predict MSSM

universality.

Until recently, CMSSM fits have relied upon fixed input parameters [1 – 7] in order to

reduce the dimensionality of the CMSSM parameter space, rendering scans viable. Such

analyses provide a good idea of what are the relevant physical processes in the various

parts of parameter space. More recently, however, it has been realised that many-parameter

scans are feasible if one utilises a Markov Chain Monte Carlo (MCMC) [6]. Such scans were

used to perform multi-dimensional Bayesian fits to indirect constraints [10]. A particularly

important constraint came from the relic density of dark matter ΩDMh2, assumed to consist

solely of neutralinos, the lightest of which is the lightest supersymmetric particle (LSP).

Under the assumption of a discrete symmetry such as R−parity, the LSP is stable and thus

still present in the universe after being thermally produced in the big bang. The results of

ref. [10] were confirmed by an independent study [11], which also examined the prospects

of direct dark matter detection. Since then, a study of the µ < 0 branch of the CMSSM

was performed [12] and implications for Tevatron Higgs searches have been discussed [13].

It is inevitable that LHC forecasts will contain a large degree of uncertainty. This

is unavoidable as, in the absence of LHC data, constraints are at best indirect and also

few in number. Within a Bayesian framework, the components of the answer that are

incontestable lie within a simple “likelihood” function, whereas the parts which parametrise

our ignorance concerning the nature of the parameter space we are about to explore are

rolled up into a prior. By separating components into these two domains, we have an

efficient means of testing not only what the data is telling is about new physics, but also

of warning us of the degree to which the data is (or isn’t) compelling enough to disabuse

us of any prior expectations we may hold.

In [10, 11], Bayesian statements were made about the posterior probability density of

the CMSSM, after indirect data had been taken into account. The final result of a Bayesian

fit is the posterior probability density function (pdf), which in previous MCMC fits, was

set to be

p(m0,M1/2, A0, tan β, s|data) = p(data|m0,M1/2, A0, tan β, s)
p(m0,M1/2, A0, tan β, s)

p(data)
(1.1)

for certain Standard Model (SM) inputs s and ratio of the two MSSM Higgs vacuum expec-

tation values tan β = v2/v1. The likelihood p(data|m0,M1/2, A0, tan β, s) is proportional

to e−χ2/2, where χ2 is the common statistical measure of disagreement between theoretical

prediction and empirical measurement. The prior p(m0,M1/2, A0, tan β, s) was taken some-

what arbitrarily to be flat (i.e. equal to a constant) within some ranges of the parameters,

and zero outside those ranges. Eq. ((1.1)) has an implied measure for the input parame-

ter. If, for example, we wish to extract the posterior pdf for m0, all other parameters are
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marginalised over

p(m0|data) =

∫

dM1/2 dA0 d tan β ds p(m0,M1/2, A0, tan β, s|data). (1.2)

Thus a flat prior in, say, tan β also corresponds to a choice of measure in the marginalisation

procedure:
∫

d tan β. Before one has a variety of accurate direct data (coming, for instance,

from the LHC), the results depend somewhat upon what prior pdf is assumed.

In all of the previous MCMC fits, Higgs potential parameters µ and B were traded for

MZ and tan β using the electroweak symmetry breaking conditions, which are obtained by

minimising the MSSM Higgs potential and obtaining the relations [16]:

µB =
sin 2β

2
(m̄2

H1
+ m̄2

H2
+ 2µ2), (1.3)

µ2 =
m̄2

H1
− m̄2

H2
tan2 β

tan2 β − 1
− M2

Z

2
. (1.4)

Eqs. (1.3), (1.4) were applied at a scale Q =
√

mt̃1
mt̃2

, i.e. the geometrical average of the

two stop masses.1 |µ| was set in order to obtain the empirically measured central value of

MZ in eq. (1.4) and then eq. (1.3) was solved for B for a given input value of tan β and

sign(µ). The flat prior in tan β in eq. (1.1) does not reflect the fact that tan β (as well as

MZ) is a derived quantity from the more fundamental parameters µ, B. It also does not

contain information about regions of fine-tuned parameter space, which we may consider

to be less likely than regions which are less fine-tuned. Ref. [15] clearly illustrates that if

one includes µ as a fundamental MSSM parameter, LEP has ruled out the majority of the

natural region of MSSM parameter space.

A conventional measure of fine-tuning [26] is

f = maxp

[

d ln M2
Z

d ln p

]

, (1.5)

where the maximisation is over p ∈ {m0,M1/2, A0, µ,B}. Here, eq. (1.4) is viewed as

providing a prediction for MZ given the other MSSM parameters. When the SUSY pa-

rameters are large, a cancellation between various terms in eq. (1.4) must be present in

order to give MZ at the experimentally measured value. Eq. (1.5) is supposed to provide a

measure of how sensitive this cancellation is to the initial parameters. In ref. [14], a prior

∝ 1/f was shown to produce fits that were not wildly different to those with a flat prior,

but the discrepancy illustrated the level of uncertainty in the fits. The new (arguably less

arbitrary) prior discussed in section 2 will be seen to lead to much larger differences.

Here, we extend the existing literature in two main ways: firstly, we construct a natural

prior in the more fundamental parameters µ, B, showing in passing that it can be seen to act

as a check on fine-tuning. We display the MCMC fit results from such priors. Secondly, we

present posterior pdfs for LHC supersymmetric (SUSY) production cross-sections. These

have not been calculated before.

1Higgs potential loop corrections are taken into account by writing [16] m̄Hi
≡ m2

Hi
− ti/vi, ti being the

tadpoles of Higgs i and vi being its vacuum expectation value.
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In the proceeding section 2, we derive the new more natural form for the prior distri-

butions mentioned above. In section 3, we describe our calculation of the likelihood. In

section 4, we investigate the limits on parameter space and pdfs for sparticle masses re-

sulting from the new more natural priors. We go on to discuss what this prior-dependence

means in terms of the “baseline SUSY production” for the LHC, and find out what it tells

us about the “error-bars” which should be attached to this and earlier LHC forecasts. In

section 5, we present our results in the profile likelihood format. In section 6 we present

pdfs for total SUSY production cross-sections at the LHC. Section 7 contains a summary

and conclusions. In appendix A, we compare the fit results assuming the flat tan β pri-

ors with a well-known result in the literature in order to find the cause of an apparent

discrepancy.

2. Prior distributions

We wish to start with a measure defined in terms of fundamental parameters µ and B,

hence

p(all data) =

∫

dµ dB dA0 dm0 dM1/2 ds
[

p(m0,M1/2, A0, µ,B, s) (2.1)

p(all data|m0,M1/2, A0, µ,B, s)
]

,

where p(all data|m0,M1/2, A0, µ,B, s) is the likelihood of the data with respect to the

CMSSM and p(m0,M1/2, A0, µ,B, s) is the prior probability distribution for CMSSM and

SM parameters. Of these two terms, the former is well defined, while the latter is open to a

degree of interpretation due to the lack of pre-existing constraints on m0, M1/2, A0, µ, and

B.2 We may approximately factorise the unambiguous likelihood into two independent

pieces: one for MZ and one for other data not including MZ , the latter defined to be

p(data|m0,M1/2, A0, µ,B, s)

p(all data|m0,M1/2, A0, µ,B, s) ≈ p(data|m0,M1/2, A0, µ,B, s) (2.2)

×p(MZ |m0,M1/2, A0, µ,B, s)

≈ p(data|m0,M1/2, A0, µ,B, s) × δ(MZ − M cen
Z ).

In the last step we have approximated the MZ likelihood by a delta function on the central

empirical value M cen
Z because its experimental uncertainties are so tiny. According to the

Particle Data Group [17], the current world average measurement is MZ = 91.1876 ±
0.0021 GeV.

Using eqs. (1.3), (1.4) to calculate a Jacobian factor and substituting eq. (2.2) into

eq. (2.1), we obtain

p(all data) ≈
∫

d tan β dA0 dm0 dM1/2 [r(B,µ, tan β) (2.3)

p(data|m0,M1/2, A0, µ,B, s)p(m0,M1/2, A0, µ,B, s)
]

MZ=Mcen

Z
,

2If an earlier experiment had already set clear constraints on m0, M1/2, A0, µ, B, then even the prior

would be well defined, being the result of that previous experiment. As things stand, however, we don’t know

anything about the likely values of these parameters, and so the prior must encode our ignorance/prejudice

as best we can.
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where the condition MZ = M cen
Z can be applied by using the constraints of eqs. (1.3), (1.4)

with MZ = M cen
Z . The Jacobian factor

r(B,µ, tan β) = MZ

∣

∣

∣

∣

B

µ tan β

tan2 β − 1

tan2 β + 1

∣

∣

∣

∣

(2.4)

disfavours high values of tan β and µ/B and comes from our more natural initial param-

eterisation of the Higgs potential parameters in terms of µ, B. We will refer below to

r(B,µ, tan β) in eq. (2.9) as the “REWSB prior”. Note that, if we consider B → B̃ ≡ µB

to be more fundamental than the parameter B, one loses the factor of µ in the denominator

of r and by sending
∫

dB dµ →
∫

dB̃ dµ µ. However, in the present paper we retain B as a

fundamental parameter because of its appearance in many supergravity mediation models

of SUSY breaking.

It remains for us to define the prior, p(m0,M1/2, A0, µ,B, s), a measure on the param-

eter space. In our case, this prior must represent our degree of belief in each part of the

space, in advance of the arrival of any experimental data. There is no single “right” way

of representing ignorance in a prior,3 and so some subjectivity must enter into our choice.

We must do our best to ensure that our prior is as “even handed” as possible. It must give

approximately equal measures to regions of parameter space which seem equally plausible.

“Even handed” need not mean “flat” however. A prior flat in m0 is not flat in m2
0 and

very non-flat in log m0. We must do our best to identify the important (and unimportant)

characteristics of each parameter. If the absolute value of a parameter m matters, then

flatness in m may be appropriate. If dynamic range in m is more expressive, then flat-

ness in 1/m (giving equal weights to each order of magnitude increase in m) may make

sense. If only the size of m relative to some related scale M is of importance, than a prior

concentrated near the origin in log(m/M) space may be more appropriate. The freedoms

contained within these, to some degree subjective, choices permit others to generate priors

different from our own, and thereby test the degree to which the data or the analysis is

compelling. If the final results are sensitive to changes of prior, then more data or a better

analysis may be called for.

The core idea that we have chosen to encode in (and which therefore defines) our prior

on m0, M1/2, A0, µ, B, and s may be summarised as follows.

(1) We define regions of parameter space where there parameters all have similar orders

of magnitude to be more natural than those where they are vastly different. For

example we regard m0 = 101 eV, M1/2 = 1020 eV as unnatural. In effect, we will use

the distance measure between each parameter and a joint ‘supersymmetry scale” MS

to define our prior.

(2) We do not wish to impose unity of scales at anything stronger than the order of

magnitude level.

3There are however plenty of “wrong” ways of representing ignorance.Choosing p(m0, M1/2, A0, µ, B, s)∝

δ(m0−40GeV)(arctan (A0/B))100 would clearly impose arbitrary and unjustifiable constraints on at least

three of the parameters!
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(3) We do not wish to presuppose any particular scale for MS itself — that is for the

data to decide.

Putting these three principles together, we first define a measure that would seem

reasonable were the supersymmetry scale of MS to be known. Later we will integrate out

this dependence on MS . To begin with we factorise the prior probability density for a given

SUSY breaking scale MS :

p(m0,M1/2, A0, µ,B, s|MS) = p(m0|MS) p(M1/2|MS) p(A0|MS) (2.5)

p(µ|MS) p(B|MS) p(s),

where we have assumed that the SM experimental inputs do not depend upon MS . This fac-

torisation of priors could be changed to specialise for particular models of SUSY breaking.

For example, dilaton domination in heterotic string models predicts m0 = M1/2 = −A0/
√

3.

In that case, one would neglect the separate prior factors for A0, M1/2 and m0 in eq. (2.5),

leaving only one of them. Since it is our intention to impose unity between m0, M1/2, A0

and MS at the “order of magnitude” level, we take a prior probability density

p(m0|MS) =
1√

2πw2m0

exp

(

− 1

2w2
log2

(

m0

MS

))

. (2.6)

The normalising factor in front of the exponential ensures that
∫ ∞

0
dm0 p(m0|MS) = 1.

w specifies the width of the logarithmic exponential, eq. (2.6) implies that m0 is within a

factor ew of MS at the “1σ level” (i.e. with probability 68%). We take analogous forms

for p(M1/2|MS) and p(µ |MS), by replacing m0 in eq. (2.6) with M1/2 and |µ| respectively.

Note in particular that our prior p(µ|MS) favours superpotential parameter µ to be within

an order of magnitude of MS and thus also within an order of magnitude of the soft breaking

parameters. This should be required by whichever model is responsible for solving the µ

problem of the MSSM, for example the Giudice-Masiero mechanism [18]. A0 and B are

allowed to have positive or negative signs and values may pass through zero, so we chose

a different form to eq. (2.6) for their prior. However, we still expect that their order of

magnitude isn’t much greater than MS and the prior probability density

p(A0|MS) =
1√

2πe2wMS

exp

(

− 1

2(e2w)

A2
0

M2
S

)

, (2.7)

ensures that |A0| < ewMS at the 1σ level. The prior probability density of B is given by

eq. (2.7) with A0 → B. We don’t know MS a priori, so we marginalise over it:

p(m0,M1/2, A0, µ,B) =

∫ ∞

0

dMS p(m0,M1/2, A0, µ,B|MS) p(MS) (2.8)

=
1

(2π)5/2w5m0|µ|M1/2

∫ ∞

0

dMS

M2
S

exp

[

− 1

2w2

(

log2

(

m0

MS

)

+ log2

( |µ|
MS

)

+ log2

(

M1/2

MS

)

+
w2A2

0

e2wM2
S

+
w2B2

M2
Se2w

)]

p(MS)
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Figure 1: Prior factors p in the CMSSM at SPS1a with varying m0. Standard Model inputs have

been fixed at their empirically central values.

and p(MS) is a prior for MS itself, which we take to be p(MS) = 1/MS , i.e. flat in

the logarithm of MS . The marginalisation over MS amounts to a marginalisation over a

family of prior distributions, and as such constitutes a hierarchical Bayesian approach [19].

The integration over several distributions is equivalent to adding smearing due to our

uncertainty in the form of the prior. As far as we are aware, the present paper is the first

example of the use of hierarchical Bayesian techniques in particle physics. In general, we

could also have marginalised over the hyper-parameter w, for example using a Gaussian

centred on 1, but we find it useful below to examine sensitivity of the posterior probability

distribution to w. We therefore leave it as an input parameter for the prior distribution.

We evaluate the integral in eq. (2.8) numerically using an integrator that does not evaluate

the integrand at the endpoints, where it is not finite. We have checked that the integral

is not sensitive to the endpoints chosen: the change induced by changing the integration

range to [10 GeV, 1016] GeV is negligible. We refer to eq. (2.8) as the “same order” prior.

To summarise, the posterior probability density function is given by

p(m0,M1/2, A0, tan β, s|data) ∝
[

p(data|m0,M1/2, A0, µ,B, s) × (2.9)

r(B,µ, tan β) p(s) p(m0,M1/2, A0, µ,B)
]

MZ=Mcen

Z
,

where we have written [. . .]MZ=Mcen

Z
on the right hand side of above relation, implying that

µ and B are eliminated in favour of tan β and M cen
Z by eqs. (1.3), (1.4).

We may view the prior factors in eq. (2.9) to be inverse fine-tuning parameters: where

the fine-tuning is high, the priors are small. It is interesting to note that a cancellation

of order ∼ 1/ tan β is known to be required in order to achieve high values of tan β [25].

This appears in our Bayesian prior as a result of transforming from the fundamental Higgs

potential parameters µ, B to tan β and the empirically preferred value of MZ . We display

the various prior factors in figure 1 as a function of m0 for all other parameters at the

SPS1a CMSSM point [20]: M1/2 = 250 GeV, A0 = 100 GeV, tan β = 10 and all SM input

parameters fixed at their central empirical values. The figure displays the REWSB prior,

– 7 –
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SM parameter constraint

1/αMS 127.918±0.018

αMS
s (MZ) 0.1176±0.002

mb(mb)
MS 4.24±0.11 GeV

mt 171.4±2.1 GeV

Table 1: SM input parameters.

the REWSB prior plus same-order priors with w = 1, 2 (simply marked w = 1, w = 2

respectively) and the inverse of the fine-tuning parameter defined in eq. (1.5). We see that

the REWSB prior actually increases with m0 along the chosen line in CMSSM parameter

space. This is due to decreasing µ in eq. (2.4) towards the focus-point4 at high m0 [56]. The

conventional fine-tuning measure f remains roughly constant as a function of m0, whereas

the same order priors decrease strongly as a function of m0. This is driven largely by the

1/m0 factor in eq. (2.8) and the mismatch between large m0 and M1/2 = 250 GeV, which

leads to a stronger suppression for the smaller width w = 1 rather than w = 2.

The SM input parameters s used are displayed in table 1. Since they have all been

well measured, their priors are set to be Gaussians with central values and widths as listed

in the table. We use ref. [17] for the QED coupling constant αMS , the strong coupling

constant αMS
s (MZ) and the running mass of the bottom quark mb(mb)

MS , all in the MS

renormalisation scheme. A recent Tevatron top mass mt measurement [21] is also employed,

although the absolutely latest value has shifted slightly [22]. p(s) is set to be a product of

Gaussian probability distributions5 p(s) ∝ ∏

i e
−χ2

i , where

χ2
i =

(ci − pi)
2

σ2
i

(2.10)

for observable i. ci denotes the central value of the experimental measurement, pi represents

the value of SM input parameter i. Finally σi is the standard error of the measurement.

We display marginalised prior pdfs in figure 2 for the REWSB, REWSB plus same order

(w = 1) and REWSB plus same order (w = 2) priors. The plots have 75 bins and the prior

pdf has been marginalised over all unseen dimensions. No indirect data has been taken into

account in producing the distributions, a feasible electroweak symmetry breaking vacuum

being the only constraint. The priors have been obtained by sampling with a MCMC

using the Metropolis algorithm [23, 24], taking the average of 10 chains of 100 000 steps

each. figures 2a,b shows that although the same order priors are heavily peaked towards

small values of m0 < 500 GeV and M1/2 ∼ 180 GeV, the 95% upper limits shown by the

vertical arrows are only moderately constrained for m0. w = 1 is not surprisingly more

peaked at lower mass values. The REWSB histograms on the other hand, prefer high

m0 (due to the lower values of µ there) and are quite flat in M1/2. The same order of

magnitude requirement is crucial in reducing the preferred scalar masses. The REWSB

4The focus-point region is a subset of the hyperbolic branch [54].
5Taking the product corresponds to assuming that the measurements are independent.
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CMSSM parameter range

A0 -4 TeV to 4 TeV

m0 60 GeV to 4 TeV

M1/2 60 GeV to 2 TeV

tan β 2 to 62

Table 2: Input parameters.

prior is fairly flat in A0 whereas the w = 1, w = 2 priors are heavily peaked around zero.

The M1/2 same-order priors are more strongly peaked than, for example, m0 because M1/2

is strongly correlated with |µ| and so the logarithmic measure of the prior (leading to the

factor of 1/(m0M1/2|µ|) in eq. (2.8) becomes more strongly suppressed. tan β is peaked

very strongly toward lower values of the considered range for the REWSB prior due to

the 1/ tan β suppression, but becomes somewhat diluted when the same order priors are

added, as shown in figure 2d.

3. The likelihood

Our calculation of the likelihood closely follows ref. [14]. For completeness, we describe

the procedure here. Including the SM inputs in table 1, eight input parameters are varied

simultaneously. The range of CMSSM parameters considered is shown in table 2. The

SM input parameters are allowed to vary within 4σ of their central values. Experimental

errors are so small on the muon decay constant Gµ that we fix it to its central value of

1.16637 × 10−5 GeV−2.

In order to calculate predictions for observables from the inputs, the program SOFTSUSY

2.0.10 [27] is first employed to calculate the MSSM spectrum. Bounds upon the sparticle

spectrum have been updated and are based upon the bounds collected in ref. [11]. Any

spectrum violating a 95% limit from negative sparticle searches is assigned a zero likelihood

density. Also, we set a zero likelihood for any inconsistent point, e.g. one which does not

break electroweak symmetry correctly, or a point that contains tachyonic sparticles. For

points that are not ruled out, we then link the MSSM spectrum via the SUSY Les Houches

Accord [28] to micrOMEGAs1.3.6 [29], which then calculates ΩDMh2, the branching ratios

BR(b → sγ) and BR(Bs → µ+µ−) and the anomalous magnetic moment of the muon

(g − 2)µ.

The anomalous magnetic moment of the muon aµ ≡ (g − 2)µ/2 was measured to be

aexp
µ = (11659208.0 ± 5.8) × 10−10 [30]. Its experimental value is in conflict with the SM

predicted value aSM
µ = (11659180.4 ± 5.1) × 10−10 from [31], which comprises the latest

QED [32], electroweak [33], and hadronic [31] contributions to aSM
µ . This SM prediction

however does not account for τ data which is known to lead to significantly different

results for aµ, implying underlying theoretical difficulties which have not been resolved so

far. Restricting to e+e− data, hence using the numbers given above, we find

δ
(g − 2)µ

2
≡ δaµ ≡ aexp

µ − aSM
µ = (27.6 ± 7.7) × 10−10. (3.1)
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Figure 2: Prior probability distributions marginalised to the (a) m0, (b) M1/2, (c) A0 and (d)

tan β directions. 95% upper limits are shown by the labelled arrows except in (c), where the arrows

delimit the 2-sided 95% confidence region. All distributions have been binned with 75 equally

spaced bins.

This excess may be explained by a supersymmetric contribution, the sign of which is

identical to the sign of the superpotential µ parameter [34]. After obtaining the one-loop

MSSM value of (g − 2)µ from micrOMEGAs1.3.6, we add the dominant 2-loop corrections

detailed in refs. [35, 36]. The W boson mass MW and the effective leptonic mixing angle

sin2 θl
w are also used in the likelihood. We take the measurements to be [37, 38]

MW = 80.398 ± 0.027 GeV, sin2 θl
w = 0.23153 ± 0.000175, (3.2)
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where experimental errors and theoretical uncertainties due to missing higher order correc-

tions in SM [39] and MSSM [40, 41] have been added in quadrature. The most up to date

MSSM predictions for MW and sin2 θl
w [40] are finally used to compute the corresponding

likelihoods. A parameterisation of the LEP2 Higgs search likelihood for various Standard

Model Higgs masses is utilised, since the lightest Higgs h of the CMSSM is very SM-like once

the direct search constraints are taken into account. It is smeared with a 2 GeV assumed

theoretical uncertainty in the SOFTSUSY2.0.10 prediction of mh as described in ref. [14].

The rare bottom quark branching ratio to a strange quark and a photon BR(b → sγ) is

constrained to be [42]

BR(b → sγ) = (3.55 ± 0.38) × 10−4, (3.3)

obtained by adding the experimental error with the estimated theory error [43] of 0.3×10−4

in quadrature. The WMAP3 [44] power law Λ-cold dark matter fitted value of the dark

matter relic density is

Ω ≡ ΩDMh2 = 0.104+0.0073
−0.0128 (3.4)

In the present paper, we assume that all of the dark matter consists of neutralino light-

est supersymmetric particles and we enlarge the errors on ΩDMh2 to ±0.02 in order to

incorporate an estimate of higher order uncertainties in its prediction.

We assume that the measurements and thus also the likelihoods extracted from Ω,

BR(b → sγ), MW , sin2 θl
w, (g− 2)µ, BR(Bs → µ+µ−) are all independent of each other so

that the individual likelihood contributions may be multiplied. Observables that have been

quoted with uncertainties are assumed to be Gaussian distributed and are characterised

by χ2.

4. CMSSM fits with the new priors

In order to sample the posterior probability density, we ran 10 independent MCMCs of

500 000 steps each using a newly developed banked [45] Metropolis-Hastings MCMC. The

banked method was specifically designed to sample several well isolated or disconnected

local maxima, for example maxima in the posterior pdfs of µ > 0 and µ < 0. Previously, we

had normalised the two samples via bridge sampling [12], which requires twice the number

of samples than for one maximum, with additional calculations required after the sampling.

Bank sampling, on the other hand, can be performed with roughly an identical number of

sampling steps to the case of one maximum and does not require additional normalisation

calculations after the sampling. The chance of a bank proposal for the position of the next

point in the chain was set to 0.1, meaning that the usual Metropolis proposal had a chance

of 0.9. The bank was formed from 10 initial Metropolis MCMC runs with 60 000 steps

each and random starting points that were drawn from pdfs flat in the ranges displayed

in tables 1, 2. The initial 4000 steps were discarded in order to provide adequate “burn-

in” for the MCMCs. We check convergence using the Gelman-Rubin R̂ statistic [48, 10],

which provides an estimated upper bound on how much the variance in parameters could be

decreased by running for more steps in the chains. Thus, values close to 1 show convergence

of the chains. In previous publications, we considered R̂ < 1.05 to indicate convergence of
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Figure 3: CMSSM fits marginalised in the unseen dimensions for (a,c) flat tanβ priors, (b,d) the

REWSB+same order prior with w = 1. Contours showing the 68% and 95% regions are shown in

each case. The posterior probability in each bin, normalised to the probability of the maximum

bin, is displayed by reference to the colour bar on the right hand side of each plot.

the chains for every input parameter. We have checked that this is easily satisfied for all

of our results.

We compare the case of flat tan β priors to the new prior in figure 3. The posterior

pdf has been marginalised down to the M1/2 − m0 plane and binned into 75×75 bins, as

with all two-dimensional distributions in the present paper. Both signs of µ have been

marginalised over, again like all following figures in this paper unless explicitly mentioned.

The bins are normalised with respect to the bin with maximum posterior. We identify

the usual CMSSM regions of good-fit in figure 3a. The maximum at the lowest value

of m0 corresponds to the stau co-annihilation region [49], where τ̃1 and χ0
1 are quasi-

mass degenerate and efficiently annihilate in the early universe. This region is associated

with tan β < 40, as figure 3b indicates. m0 ∼ 1 TeV in figure 3a has large tan β ∼ 50.

This region corresponds to the case where the neutralinos efficiently annihilate through

s−channel pseudoscalar Higgs bosons A0 into bb̄ and τ τ̄ pairs [50, 51]. The region at low

M1/2 and high m0 in figure 3a is the h0 pole region [53], where neutralinos annihilate

predominantly through an s−channel of the lightest CP even Higgs h0. In order to evade
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LEP2 Higgs constraints, this also requires large tan β. The focus point region [55 – 57] is

the region around M1/2 ∼ 0.5 TeV and m0 = 2 − 4 TeV, where the lightest neutralino has

a significant higgsino component, leading to efficient annihilation into gauge boson pairs.

This region is somewhat sub-dominant in the fit, but extends through most of the range

of tan β considered.

We see a marked difference between figures 3a and 3b. The A0 and h0 pole regions

have vanished with the REWSB priors. The A0 pole region is suppressed because the

REWSB prior disfavours the required large values of tanβ, as shown in figure 2d. The

h0 pole region is suppressed because the REWSB prior disfavours large values of |A0|, see

figure 2c, and large values of |A0|/M1/2. Large values of |A0| are necessary in this region

in order to achieve large stop mass splitting and therefore large corrections to the lightest

Higgs mass. Without such corrections, h0 falls foul of LEP2 Higgs mass bounds. The

focus-point region has been diminished by the REWSB priors mainly because the large

values of m0 required become suppressed as in figure 2a. This suppression comes primarily

from the requirement that SUSY breaking and Higgs parameters be roughly of the same

order as each other. Figures 3b,d display only one good-fit region corresponding to the stau

co-annihilation region at low m0. The banked method [45] allows an efficient normalisation

of the µ > 0 and µ < 0 branches, both of which are included in the figure.

We now turn to a comparison of the REWSB plus same order prior fits. We consider

such fits to give much more reliable results than the flat tan β fits, and a large difference

between fits for w = 1 to w = 2 would provide evidence for a lot of sensitivity to our exact

choice of prior. Some readers might consider the flat tan β priors to be not unreasonable,

and those readers could take the large difference between flat priors and the new more

natural ones as a result of uncertainty originating from scarce data.

Pdfs of sparticle and Higgs masses coming from the fits are displayed in figures 4a–

4h along with 95% upper bounds calculated from the pdfs. The pdfs displayed are for

the masses of (a) the lightest CP even Higgs, (b) the CP-odd Higgs, (c) the left-handed

squark, (d) the gluino, (e) the lightest neutralino, (f) the lightest chargino, (g) the right-

handed selectron and (h) the lightest-stau lightest-neutralino mass splitting respectively.

The most striking feature of the figure is that the Higgs and sparticle masses tend to be

very light for the REWSB and same order prior, boding well for future collider sparticle

searches. This effect is consistent with a preference for smaller m0, M1/2 exhibited by

the new priors in figure 2b,d. In general, there is remarkably little difference between the

two different cases of w = 1 or w = 2. This fact is perhaps not so surprising considering

that the shape of the priors doesn’t change enormously with w, as figures 1, 2 show. The

sparticle mass distributions for priors that are flat in tan β were displayed in refs. [10 –

12] and show a spread up to much higher values of the masses. As we have explained

above, we do not believe flat tan β to be an acceptable prior. Some readers may consider

it to be so: such readers may consider our fits to be considerably less robust to changes

in the prior than figure 4 indicates. Lower values of A0 and tan β help to make the

lightest CP-even Higgs light in the REWSB+same order prior case, shown in figure 4a.

The mass ordering mq̃l
> mχ0

2

> ml̃R
> mχ0

1

allows a “golden channel” decay chain of
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Figure 4: MSSM particle mass pdfs and profile likelihoods: dependence upon the prior in the

CMSSM. The vertical arrows display the one-sided 95% upper limits on each mass. There are

75 bins on each abscissa. Histograms marked “profile” are discussed in section 5 and have been

multiplied by different dimensionful constants in order to be comparable by eye with the w = 1, 2

pdfs. The profile 95% confidence level upper limits are calculated by finding the position for which

the 1-dimensional profile likelihood has 2∆ lnL = 2.71 [46].

q̃l → χ0
2 → l̃R → mχ0

1

. Such a decay chain has been used to provide several important

and accurate constraints upon the mass spectrum [60]. In some regions of parameter

space, it can also allow spin information on the sparticles involved to be extracted [47].
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We may calculate the Bayesian posterior probability of such circumstances by integrating

the posterior pdf over the parameter space that allows such a mass ordering. From the

MCMC this is simple: we simply count the fraction of sampled points that have such a

mass ordering.6 The posterior probability of such a mass ordering is high: 0.93 for w = 1

and 0.85 for w = 2, indicating that analyses using the decay chain are likely to be possible

(always assuming the CMSSM hypothesis, of course).

As pointed out in ref. [10], the flat tan β posteriors extend out to the assumed upper

range taken on m0 and so the flat tan β pdf for the scalar masses were artificially cut off at

the highest masses displayed. This is no longer the case for the new choice of priors since

the regions of large posterior do not reach the chosen ranges of parameters, as shown in

figures 3b,d. Thus our derived upper bounds on, for instance mq̃L
in figure 4c and mẽR

in

figure 4g are not dependent upon the m0 < 4 TeV range chosen. The mass splitting between

the lightest stau and the neutralino is displayed in figure 4h. The insert shows a blow-up

of the quasi-degenerate stau-co-annihilation region and has a different normalisation to the

rest of the plot. Since the REWSB+same order prior fit results lie in the co-annihilation

region, nearly all of the probability density predicts that mτ̃1−mχ0

1

< 20 GeV. It is a subject

of ongoing research as how to best verify this at the LHC [58]. In figure 4g, the plot has

been cut off at a probability P of 0.1 and the histograms actually extend to 0.70,0.68 in

the lowest bin for w = 1 and w = 2 respectively. Similarly, we have cut off figure 4h at

a probability of 0.05. The fits extend to 0.93, 0.85 for w = 1, w = 2 respectively in the

lowest bin.

We examine the statistical pull of the various observables in figure 5. In each case, the

likelihood coming from the empirical constraint is shown by the continuous distribution.

The histograms show the fitted posterior pdfs depending upon the prior. We have some-

times slightly altered the normalisation of the curves and histograms to allow for clearer

viewing. Figure 5a shows that the ΩDMh2 pdf is reproduced well by all fits irrespective of

which prior distribution is used. This is because the fits are completely dominated by the

ΩDMh2 contribution, since the CMSSM parameter space typically predicts a much larger

value than that observed by WMAP [12]. Figures 5b, 5c, 5d show that BR[b → sγ], MW ,

sin2 θl
w are all constrained to be near their central values, with less variance than is required

by the empirical constraint. Direct sparticle search limits mean that sparticles cannot be

too light and hence cannot contribute strongly to the three observables. The rare decay

branching ratio BR[Bs → µµ] is displayed in figure 5e. Both fits are heavily peaked around

the SM value of 10−8.5, indeed the most probable bin has been decapitated in the figure

for the purposes of clarity, and really should extend up to a probability of around 0.9. The

SUSY contribution to BR(Bs → µµ) ∝ tan β6/M4
SUSY and so the preference for small tan β

beats the preference for smallish sparticle masses ∼ O(MSUSY) in the new fits. In all of

figures 5a-e, changing the width of the priors from 1 to 2 has negligible effect on the results.

The exception to this trend is δaµ, as shown in figure 5f. δaµ has a shoulder around zero

for w = 2, corresponding to a small amount of posterior probability density at high scalar

masses, clearly visible from figure 4g. Such high masses suppress loops responsible for the

6Other absolute probabilities quoted below are calculated in an analogous manner.
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Figure 5: Statistical pull of different observables in CMSSM fits. We show the pdfs for the

experimental measurements as well as the posterior pdf of the predicted distribution in w = 1 and

w = 2 fits. Profile histograms are discussed in section 5 and are multiplied by different dimensionful

constants in order to be comparable by eye with the w = 1, 2 pdfs.

SUSY contribution to (g − 2)µ. δaµ is pulled to lower values than the empirically central

value by direct sparticle limits and the preference for values of tan β that are not too large.
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The almost negligible portion of the graph for which δaµ < 0 corresponds to µ < 0 in

the CMSSM. (g − 2)µ has severely suppressed the likelihood, and therefore the posterior,

in this portion of parameter space. For flat tanβ priors, and δaµ = 22 ± 10 × 10−10, we

had previously estimated that the ratio of integrated posterior pdfs between µ < 0 and

µ > 0 was 0.7 − 0.16. For the new priors, where sparticles are forced to be lighter, their

larger contribution to δaµ further suppresses the µ < 0 posterior pdf. From the samples,

we estimate7 P (µ < 0)/P (µ > 0) = 0.001 ± 002 for w = 1 and 0.003 ± 0.003 for w = 2,

respectively for δaµ = (27.6±7.7)×10−10 . Thus, while the probabilities are not accurately

determined, we know that they are small enough to neglect the possibility of µ < 0.

5. Profile likelihoods

Since, for a flat prior, eq. 1.1 implies that the posterior is proportional to the likelihood in a

Bayesian analysis, one can view the distributions resulting from the MCMC scan as being

a “likelihood map” [10]. If one marginalises in the unseen dimensions in order to produce

a one or two-dimensional plot, one either interprets the resulting distribution probabilisti-

cally in terms of the posterior, or alternatively as a way of viewing the full n-dimensional

likelihood map, but without a probabilistic interpretation in terms of confidence limits,

or credible intervals. Instead, frequentist often eliminate unwanted parameters (nuisance

parameters) by maximization instead of marginalization. The likelihood function of the

reduced set of parameters with the unwanted parameters at their conditional maximum

likelihood estimates is called the profile likelihood [52]. Approximate confidence limits can

be set by finding contours of likelihood that differ from the best-fit likelihood by some

amount. This amount depends upon the number of “seen dimensions” and the confidence

level, just as in a standard χ2 fit [46].

While we believe that dependence on priors actually tells us something useful about

the robustness of the fit, we are also aware that many high energy physicists find the

dependence upon a subjective measure distasteful, and would be happier with a frequentist

interpretation. When the fits are robust, i.e. there is plentiful accurate data, we expect

the Bayesian and frequentist methods to identify similar regions of parameter space in any

fits. We are not in such a situation with our CMSSM fits, as we have shown in previous

sections, and so we provide the profile likelihood here for completeness.

We can use the scanned information from the MCMC chains to extract the profile

likelihood very easily. Let us suppose, for instance, that we wish to extract the profile in

m0−M1/2 space. We therefore bin the chains obtained in m0−M1/2 as before. We find the

maximum likelihood in the chain for each bin and simply plot that. The 95% confidence

level region then is delimited by the likelihood contour at a value 2∆ ln L = 5.99 [46], where

∆ ln L = ln Lmax − ln L. The profile likelihoods in the m0 −M1/2 and m0 − tan β plane are

shown in figure 6.

Comparing figures 6a and 3a, we see that the profile likelihood gives similar information

to the Bayesian analysis with flat likelihoods. The main difference is that the profile

7These numbers come from the mean and standard deviation of 10 chains, each of which is considered

to deliver an independent estimate.
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Figure 6: Two dimensional profile likelihoods in the (a) m0 − M1/2 plane, (b) m0 − tan β plane.

There are 75 bins along each direction. The inner (outer) contours show the 68% and 95% confidence

level regions respectively.

likelihood’s confidence limit only extends out to (M1/2,m0) < (1.0, 2) TeV, whereas for the

Bayesian flat-prior analysis, values up to (M1/2,m0) < (1.5, 4) TeV are viable. Comparing

figure 6b and 3c, we again see similar constraints, except that the tail at high tan β up to

larger values of m0 > 2 TeV has been suppressed in the profile. From the difference we

learn the following facts: in this high tanβ-high m0 tail, the fit to data is less good than

in other regions of parameter space. However, it has a relatively large volume in unseen

dimensions of parameter space, which enhances the posterior probability in figure 3c. The

difference between the two plots is therefore a good measure of such a so-called “volume

effect”. In ref. [11, 13], an average-χ2 estimate was constructed in order to identify such

effects. We find the profile likelihood to be easier to interpret, however. It also has the

added bonus of allowing a frequentist interpretation.

We show the profile likelihoods of the various relevant masses in figure 4. There is

a general tendency for all of the masses to spread to somewhat heavier values than the

w = 1, 2 same order+REWSB priors. We remind the reader that the profile likelihood

histograms are not pdfs. In the figure, they have been multiplied by dimensionful constants

that make them comparable eye to the Bayesian posteriors on the plot. The gluino mass

shows the most marked difference: it appears that higher gluino masses are disfavoured

by volume effects in the Bayesian analyses. However, while the profiles differ from the

Bayesian analyses to a much larger degree than the w = 1 or w = 2 prior fits differ from each

other, they are not wildly different to the Bayesian analyses. The higgs mass distributions

look particularly similar. There is a qualitative difference in figure 4g,h, where mẽR
and

mτ̃1 − mχ0

1

have a non-negligible likelihood up to 1TeV, unlike the posterior probabilities.

Figures 5a-f show the profile likelihoods of the pull of various observables. We see that

ΩDMh2 shows a negligible difference to the posteriors. This is because the dark matter relic

density constraint dominates the fit and determines the shape and volume of the viable
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parameter space. Most of the profiles are similar to the posteriors in the figure except for

figure 5e, where the likelihood extends out to much higher values of the branching ratio

of Bs → µµ. These values correspond in figure 6b to high tan β but low m0 points. The

posteriors for high BR(Bs → µµ) ∝ 1/MSUSY
2 are suppressed because of the large volumes

at high m0 (and hence at high MSUSY, where BR(Bs → µµ) approaches the Standard

Model limit due to decoupling). In figure 5c, we see enhanced statistical fluctuations in the

upper tail of the profile likelihood of MW , presumably due to a small number of sampled

points there. These fluctuations could be reduced with further running of the MCMCs,

however.

6. LHC SUSY cross sections

In order to calculate pdfs for the expected CMSSM SUSY production cross-sections at the

LHC, we use HERWIG6.500 [59] with the default parton distribution functions. We calculate

the total cross-section of the production of two sparticles with transverse momentum pT >

100 GeV. We take the fitted probability distributions of the previous section with the

REWSB plus same order priors and use HERWIG6.500 to calculate cross-sections for (a)

strong SUSY production i.e. squark and gluino production, (b) inclusive weak gaugino

production (i.e. a neutralino or chargino in association with another neutralino, a chargino,

a gluino, a squark or a gluino) and (c) 2-slepton production. No attempt is made here to fold

in experimental efficiencies or the branching ratios which follow the decays into final state

products. The total cross-section times assumed integrated luminosity therefore serves as

an upper-bound on the number of events expected at the LHC in the different channels

(a)-(c). Some analyses give a few percent for efficiencies, but for specific cases of more

difficult signatures, the efficiencies can be tiny.

We show the one dimensional pdfs for the various SUSY production cross-sections in

figure 7a. We should bear in mind that the LHC is expected to deliver 10 fb−1 of luminosity

per year in “low-luminosity” mode, whereas afterwards this will increase to 30 fb−1. Several

years running at log10 σ/fb= 0 therefore corresponds to of order a hundred production

events for 100 fb−1. log10 σ/fb= 0 then gives some kind of rough limit for what might

be observable at the LHC, once experimental efficiencies and acceptances are factored in.

Luckily, we see that strong production and inclusive weak gaugino production are always

above this limit, providing the optimistic conclusion that SUSY will be discovered at the

LHC (provided, as always in the present paper, that the CMSSM hypothesis is correct

and that the reader accepts our proposal for the prior pdfs). The 95% lower limits on the

total direct production cross-sections are 360 fb, 90 fb and 0.01 fb for strongly interacting

sparticle, inclusive weak gaugino and slepton production respectively. There therefore

is a small chance that direct slepton production may not be at observable rates. The

posterior probability that σ(pp → l̃+ l̃−) < 1 fb is 0.063. Even in the event that direct

slepton production is at too slow a rate to be observable, it is possible that sleptons can

be observed and measured by the decays of other particles into them [60]. The pdfs of

total SUSY production cross-sections for w = 2 are almost identical to those shown in the

figure. The main difference is in the total direct slepton production cross section, where
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Figure 7: Total SUSY LHC production cross-section pdfs in the CMSSM with REWSB plus w = 1

same order priors. “strong” refers to squark/gluino production, “weak” to inclusive weak gaugino

production and “slepton” to direct slepton production. In (a), 95% lower limits on the cross-sections

are shown by the vertical arrows. The probability normalised to the bin with maximum probability,

is shown by reference to the colour-bar on the right hand side for (b), (c) and (d). The contours

show the 95% limits in the two-dimensional plane.

the small bump at σ ∼ 10−2 fb is somewhat enlarged. It has the effect of placing the 95%

lower bound on the slepton production cross-section at 4.8×10−4 fb. For w = 2, the chance

of the di-slepton production cross-section being less than 1 fb is 0.15. The strong and

weak gaugino production cross-sections have 95% lower bounds of 570,90 fb respectively

for w = 2.

We examine correlations between the various different cross-sections in figures 7b-d.

For instance, figure 7b has two distinct maxima, the focus-point region on the left-hand side

and the stau co-annihilation region on the right-hand side. If one could obtain empirical

estimates of the total cross-sections to within a factor of about 3 (corresponding to an error

of about 0.5 in the log10 value) then measurements of σstrong and σweak could distinguish

between the two mechanisms. There is a overlap between the one-dimensional projections

of the two different regions in either σstrong or σweak and so measurements of both seem to

be required for discrimination. The probability density of the focus-point region becomes
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too smeared in the σslepton direction to appear in the 95% limit bounds in figure 7c,d.

Experimental measurements of the cross-sections in figure 7 would provide a test of the

CMSSM hypothesis. It is clear from figure 7a that σslepton has two isolated probability

maxima. The one at σslepton < 0 corresponds to the focus point region, where scalar x

masses are large. This region will probably directly produce too few sleptons to be observed

at the LHC and so will not be useful there for discriminating the CMSSM focus point region

from the co-annihilation region unless there is a significant luminosity upgrade [61].

7. Conclusion

This analysis constitutes the first use in a serious physics context of a new “banked”

MCMC proposal function [45]. This new proposal function has allowed us to sample

simultaneously, efficiently and correctly from both signs of µ. The resulting sampling

passed convergence tests and therefore gave reliable estimates of LHC SUSY cross-section

pdfs. MCMCs have also been used to determine the impact of potential future collider

data upon the MSSM [62, 63, 13]. The development of tools such as the banked proposal

MCMC constitutes a goal at least as important as the interesting physics results derived

here. In case they may be of use for future work, we have placed the samples obtained by

the banked MCMC on the internet, with instructions on how to read them, at the following

URL http://users.hepforge.org/˜allanach/benchmarks/kismet.html.

We argued that prior probability distributions that are flat in tan β are less natural

than those that are flat in the more fundamental Higgs potential parameters µ, B of the

MSSM. We have derived a more natural prior distribution in the form of eq. (2.8), which

is originally flat in µ, B and also encodes our prejudice that µ and the SUSY breaking

parameters are “of the same order”. There is actually a marginalisation over a family of

priors, and as such our analysis uses a hierarchical Bayesian prior distribution. It should

be noted that this prior pdf can replace definitions of fine-tuning in the MSSM Higgs

sector. Its use in Bayesian statistics is well-defined, and we have examined its effect on

Bayesian CMSSM fits. The main effect is to strongly disfavour the Higgs-pole and focus

point dark matter annihilation regions of CMSSM parameter space. The sparticle masses

are then predicted to be probably lighter than previously thought as a result of the new

prior. There is little difference in the results when one changes the widths of the same order

pdfs, but the results are very different to previous ones in the literature where flat priors

in tan β were examined. If one rejects the prior flat in the SUSY breaking parameters,

as we have advocated here, our results appear rather robust with respect to changes in

the prior. However, for readers that find the same order priors too strong, one can view

the difference between the flat prior results and those using the same order priors as a

result of uncertainty originating from scarce data. We feel that the sensitivity to priors

must be studied, and find the large dependence on priors consistent with something that

is intuitively obvious [64]; that a few pieces of indirect data are not sufficient to robustly

constrain a complex model of 8 parameters. The frequentist analysis does not depend

on any prior, but it also does not allow us to inject reasonable assumptions about the

naturalness of the theory. A comparison between the likelihood profile and posteriors is
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Figure 8: SUSY production cross-section profile likelihoods. One-sided 95% lower confidence level

limits are shown as calculated from these histograms by the vertical arrows.

ideal because it contains information about volume effects in the Bayesian analyses. The

frequentist confidence levels on MSSM particle masses are different to Bayesian credible

intervals, but within the same ball-park as each other. Thus we may infer some rough

limits, but to be conservative one might take the least constraining upper bound by any of

the different methods.

This dependence upon priors does indicate the need for caution when interpreting our

results; constraining data are currently too scarce to render the posterior pdfs approxi-

mately independent of the prior assumption. The lighter sparticles result in optimistic

total SUSY cross-section predictions for the LHC. It would be interesting to see the foot-

prints of other SUSY breaking models to see whether the correlations between different

cross-sections are a good discriminator [65].

The profile likelihoods of SUSY production cross-sections are shown in figure 8. In

the figure, “strong” refers to squark/gluino production, “weak” to inclusive weak gaugino

production and “slepton” to direct slepton production. By comparison to figure 7a, we

see that the profile likelihoods generally prefer somewhat larger SUSY production cross-

sections than the Bayesian analysis with REWSB+same order w = 1 priors. The 95%

one-sided lower confidence level bounds upon them are for 2000 fb for sparton production,

300 fb for weak gaugino production and 80 fb for slepton production. This last bound is

particularly different from the Bayesian analysis since there the small probability for the

focus-point régime, evidenced by the low bump to the left hand side of figure 7a, was only

pushed just above an integrated posterior pdfs of 5% by volume effects.
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Figure 9: (a) Reduced parameter space global fit from ref. [7] for tanβ = 10, µ > 0. In the plot,

A0 has a relative minus sign with respect to the definition used in the present paper, (b) our version

of the same fit, marginalised over m0. 68% and 90% confidence level regions are shown.

A. Comparison with previous literature

The flat-prior results may at first sight seem to be in contradiction with the analysis of

Ellis et al. [7], where a preference for light SUSY was found from quite similar global fits

to those in the present paper. They also fit MW , sin2 θl
w(eff) as well as (g − 2)µ, while

using the relic density of dark matter as a constraint. In their paper, Ellis et al. fixed

tan β, and all Standard Model inputs at their central experimental values. For every value

of M1/2, A0 scanned, m0 is adjusted until the central WMAP3 value of ΩDMh2 results.

The smearing due to the finite error on ΩDMh2 is very small and so it is argued that this

procedure well approximates the full constraints upon parameter space. We display the

resulting constraint on the A0 − M1/2 plane for tan β = 10 and µ > 0 in figure 9a. The

partial ellipses show the authors’ claimed 68% and 90% confidence level limits calculated

with ∆χ2 = 2.30, 4.61 [7] from the best-fit point, marked by a cross. Actually, since

the confidence level regions are constrained within a wedge-shape in the figure, the 68%

(90%) limits should not necessarily correspond to ∆χ2 = 2.30(4.61) respectively. The

regions shown on the figure should therefore be re-calculated, by calculating what sort of

probability distribution ∆χ2 has when trapped in such a wedge.

In order to emulate these results, we perform a similar but Bayesian fit with the

MCMC algorithm: all Standard Model inputs are fixed at their central empirical values,

tan β = 10 is fixed and m0, A0, M1/2 are allowed to vary in the MCMC algorithm in order

to fit the combined posterior probability of dark matter plus other measurements. For this

comparison, we choose flat priors in m0 < 1TeV, M1/2 < 1 TeV and -3 TeV< A0 <3TeV.

The likelihood is calculated as in section 3. The main conclusion from figure 9 is that the

two results are similar. If the correct relationship between ∆χ2 and confidence-level were

used in figure 9a, the confidence level region could extend out to higher values of M1/2. We
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should note strictly that, being Bayesian confidence regions as compared to frequentist,

we do not exactly compare like with like in figures 9a,b but we do expect roughly similar

confidence regions in the two cases. When we perform a similar fit with a larger allowed

range of m0 < 4 TeV, figure 9b deforms due to contributions from h0 and fixed-point regions

but the preference for M1/2 < 800 GeV remains. We conclude from this that Ellis et al.

did not scan larger values of m0 where the focus point regime resides. The procedure of

Ellis et al. is not suited for including the h0 and fixed-point regions, since then there is no

unique solution of m0 which provides the central value of ΩDMh2. If we then additionally

include smearing due to tan β in figure 9b with a flat prior, the A0-pole region extends the

region of valid M1/2 out to higher values > 1 TeV. Allowing variations of Standard Model

input parameters produces further smearing in the fits until, finally, figure 3a is obtained.
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